Power Of Digitized Health Data

William Paiva, Executive Director, Oklahoma State University's Center for Health Systems William serves as a Manager of Oklahoma Life Sciences Fund, bringing a broad range of knowledge from experience within management consulting, the pharmaceutical industry, and investment banking.

Healthcare is undergoing significant transformation, and digital health data is at the center of this change. According to the Centers for Disease Control, nearly 80 percent of the nation’s healthcare institutions have converted to an electronic medical record(EMR)system from the old paper based system. New technologies like smartphone applications are also creating new stockpiles of digital data. Genetic data is growing as well; scientists can sequence a person’s entire DNA within 24 hours and for less than $1,000. Collectively, the amount of digital health data is expected to grow from 500,000 to 25 million terabytes over the next five years.

Why do we care that our health information is now in a digital format?Howdoes it benefit allof us?
People who work in healthcare and every industry for that matter are smart, well trained, and do their best to stay up to date with the latest research, methodologies and trends. However, it is not rational to assume individuals have the depth of knowledge or data access to deal with every situation they encounter. Further more, the healthcare field is already understaffed, and this issue will only get worse as the looming mass retirement of baby boomers from the healthcare workforce creates an unprecedented supply and demand crisis.

Digitized health data has the potential to help mitigate this troubling situation. Predictive medicine uses computing power and statistical methods to analyze EMR and other health related data to predict clinical outcomes for individual patients. Beyond health outcome forecasting, predictive medicine also can uncover surprising and often unanticipated clinical associations.

Oklahoma State University’s Center for Health Systems Innovation(CHSI), through its Institute for Predictive Medicine(IPM), is a leader in the exploding field of predictive medicine thanks to the unprecedented donation by Cerner Corporation of its HIPAA compliant clinical health database, one of the largest available in the US Specifically, this dataset represents clinical information from
over 63 Million patients and includes admission, discharge, clinical events, pharmacy,and laboratory data spanning more than 16 years.

Over 20 fulltime CHSI employees and nearly two dozen graduate students are working to execute the CHSI mission to transform rural and Native American health through data analytics. Further, CHSI has a number of ongoing partnerships with academia, health systems and corporations to extract value from digitized health data.

One example of CHSI’s numerous predictive medicine projects is an effort to help physicians determine whether the performance of particular cardiovascular drugs varies by gender or race, or both. Conversely, this study will help indicate which drugs perform poorly or even cause complications in these populations. Other CHSI studies are designed to give physicians insight into whether patients with a particular disease are likely to develop or already have an associated disease, which will aid in co-managing these conditions and lead to better healthcare. Another project is designed to help hospitals use data on patient demographic characteristics, comorbidities, discharge setting, and other medical information contained in comprehensive EMR systems to determine if patients are at high risk for being readmitted for disease associated complications. If patients are considered high risk, they can get the care and support necessary to prevent frequentcycling through the healthcare system.

Predictive medicine uses computing power and statistical methods to analyze EMR and other health related data to predict clinical outcomes for individual patients

Predictive medicine can also lead to the creation and implementation of tools for managing larger patient loads, which can aid healthcare providers in dealing with supply and demand problems. For instance, CHSI has developed a clinical decision support system that can detect diabetic retinopathy with a high degree of accuracy using lab and comorbidity data available through primary care visits. This algorithm addresses the very real challenge of low patient compliance, particularly among rural and underserved populations, with annual ophthalmic eye exams, which are the gold standard for retinopathy detection and preventing vision impairment or total visionloss. CHSI is extending this work to other common diabetes related microvascular complications with the goal of developing a comprehensive suite of tools that can help increase prevention and management of these complications, among the nation’s growing diabetic population.

In addition to the previously described benefits of health data analytics, CHSI is developing tools to help rural health care professionals better manage their patient populations in an environment where not only are primary care shortages the norm, but specialists are virtually nonexistent.

The transformation of healthcare delivery is not a distant vision but rather a current reality thanks to predictive medicine tools and insights. To quote the famed historian, explorer and philosopher, Winwood Reade, “While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty”. These words epitomize the power and potential of digitized health data to truly revolutionize healthcare as we know it. OSU’s Center for Health Systems Innovation, a joint venture between the OSU Spears School of Business and the OSU Center for Health Sciences, will be at the center of this evolution by bringing critical, game changing ideas and processes to healthcare for the present and the future.